
1

A PRACTICAL APPROACH TO
MODIFIED CONDITION/DECISION COVERAGE

Kelly J. Hayhurst, NASA Langley Research Center, Hampton, Virginia

Dan S. Veerhusen, Rockwell Collins, Inc., Cedar Rapids, Iowa

Abstract
Testing of software intended for safety-critical

applications in commercial transport aircraft must
achieve modified condition/decision coverage
(MC/DC) of the software structure. This
requirement causes anxiety for many within the
aviation software community. Results of a survey
of the aviation software industry indicate that many
developers believe that meeting the MC/DC
requirement is difficult, and the cost is exorbitant.
Some of the difficulties stem, no doubt, from the
scant information available on the subject. This
paper provides a practical 5-step approach for
assessing MC/DC for aviation software products,
and an analysis of some types of errors expected to
be caught when MC/DC is achieved1.

Introduction
Software has become the medium of choice for

enabling advanced automation in aircraft, and also
in ground and satellite-based systems that manage
communication, navigation, and surveillance for air
traffic control. As the capability and complexity of
software-based systems increases, so does the
challenge of verifying that these systems meet their
requirements, including safety requirements. For
systems that are safety and mission critical,
extensive testing is required. However, the size and
complexity of today’s avionics products prohibit
exhaustive testing.

The RTCA/DO-178B document Software
Considerations in Airborne Systems and Equipment

1 This work was supported by the FAA William J. Hughes
Technical Center, Atlantic City International Airport, New
Jersey.

Certification [1] is the primary means used by
aviation software developers to obtain Federal
Aviation Administration (FAA) approval2 of
airborne computer software [2]. DO-178B
describes software life cycle activities and design
considerations, and enumerates sets of objectives
for the software life cycle processes. For level A
software (that is, software whose anomalous
behavior could have catastrophic consequences),
DO-178B requires that testing achieve modified
condition/decision coverage (MC/DC) of the
software structure. MC/DC is a structural coverage
measure consisting of four criteria mostly
concerned with exercising Boolean logic. The
MC/DC criteria were developed to provide many of
the benefits of exhaustive testing of Boolean
expressions without requiring exhaustive testing
[3].

Results of a 1999 survey of the aviation
software industry showed that more than 75% of the
survey respondents claimed meeting the MC/DC
requirement in DO-178B was difficult, and 74% of
the respondents said the cost was either substantial
or nearly prohibitive [4]. Much of the cost of
verifying level A software is often attributed to
meeting the MC/DC objective. Additionally, many
claim that the effectiveness of MC/DC with respect
to finding errors is marginal at best. A recent case
study by Dupuy and Leveson [5] found that testing
augmented to satisfy MC/DC “while relatively
expensive, was not significantly more expensive
than achieving lower levels of code coverage.
Important errors were found by the additional

2 ED-12B is recognized by the Joint Aviation Authorities
(JAA) via JAA temporary guidance leaflet #4 as the primary
means for obtaining approval of airborne computer software in
Europe.

https://ntrs.nasa.gov/search.jsp?R=20040086014 2018-03-30T12:25:31+00:00Z

2

test cases required to achieve MC/DC coverage
(i.e., in the software found not to be covered by
blackbox functional testing).”

Definitions
Knowing the DO-178B glossary description of

MC/DC plus the descriptions for condition and
decision [1] is essential to building a working
understanding of MC/DC.

Condition–A Boolean expression
containing no Boolean operators.

Decision–A Boolean expression composed
of conditions and zero or more Boolean
operators. A decision without a Boolean
operator is a condition. If a condition
appears more than once in a decision,
each occurrence is a distinct condition.

Modified Condition/Decision Coverage–
Every point of entry and exit in the
program has been invoked at least once,
every condition in a decision in the
program has taken all possible outcomes
at least once, every decision in the
program has taken all possible outcomes
at least once, and each condition in a
decision has been shown to independently
affect that decision’s outcome. A
condition is shown to independently affect
a decision’s outcome by varying just that
condition while holding fixed all other
possible conditions.

Given the descriptions above, we note the
following, often misunderstood, points:

• MC/DC applies to every Boolean expression.
That is, MC/DC applies to assignment
statements such as Z:= A or B and to
statements such as if A and B then …

• The number of inputs to a given decision may
differ from the number of conditions. For
example, the decision (A and B) or (A and
C), where A, B, and C are Boolean variables,
contains 3 inputs (A, B, and C) and 4
conditions (first A, B, C, and second A)
because each occurrence of A is considered a
unique condition.

Intent of MC/DC
The MC/DC criteria were developed by

Chilenski and Miller to achieve a degree of
confidence in the software comparable to that
provided by exhaustive testing, while requiring
fewer test cases [3]. That is, MC/DC is intended to
assure, with a high degree of confidence, that
requirements-based testing has demonstrated that
each condition in each decision in the source code
has the proper effect.

In the context of DO-178B, MC/DC serves as
a measure of the adequacy of requirements-based
testing—especially with respect to exercising
logical expressions. In that regard, MC/DC is often
used as an exit criterion (or one aspect of the exit
criteria) for requirements-based testing. The
RTCA/DO-248A document Second Annual Report
for Clarification of DO-178B "Software
Considerations in Airborne Systems and Equipment
Certification" [6] explains the purpose of structural
coverage analysis as follows:

The purpose of structural coverage analysis
with the associated structural coverage
analysis resolution is to complement
requirements-based testing as follows:

1. Provide evidence that the code structure
was verified to the degree required for
the applicable software level;

2. Provide a means to support
demonstration of absence of unintended
functions;

3. Establish the thoroughness of
requirements-based testing.

With respect to intended function, evidence
that testing was rigorous and complete is
provided by the combination of
requirements-based testing (both normal
range testing and robustness testing) and
requirements-based test coverage analysis.

…

The rationale is that if requirements-based
testing proves that all intended functions
are properly implemented, and if structural
coverage analysis demonstrates that all
existing code is reachable and adequately
tested, these two together provide a greater
level of confidence that there are no
unintended functions.

3

MC/DC Fundamentals
The requirement to show the independent

effect of each condition within a decision sets
MC/DC apart from other structural coverage
measures. According to Chilenski and Miller,
showing that each logical condition independently
affects a decision’s outcome requires specific
minimal test criteria for each logical operator [3].
Knowing and understanding the minimal test
criteria for two logical operators is a sufficient
basis, in most cases, for determining compliance
with the MC/DC objective.

Understanding how to test a logical and
operator and a logical or operator is essential to
understanding MC/DC. For the analysis presented
here, logical operators are shown schematically as
logical gates; and, the terms “logical operator” and
“gate” are used interchangeably. Table 1 shows
schematic representations for the and and or
operators. Note that Boolean operators are denoted
by bolded italics: and, and or; Boolean conditions
are denoted by bolded capital letters: A, B, C, …;
and, Boolean outcomes are denoted true or false or
T or F.

Table 1. Representations for Elementary
Logical Gates

Schematic Representation Truth Table
A

 input
C

 output
A

B

C

C := A and B;

A B C
T T T
T F F
F T F
F F F

A

B

C

C := A or B;

A B C
T T T
T F T
F T T
F F F

The following subsections describe the
minimum test criteria for an and and an or gate.

Testing an and Gate
Minimum testing to achieve MC/DC for an n-

input and gate requires the following:

(1) A single test case where all inputs are set
true with the output observed to be true.

(2) Test cases such that each and every input is
set exclusively false with the output
observed to be false. This requires n test
cases for each n-input and gate.

The test criteria make sense when considering
how an and gate works. Any false input to an and
gate will result in a false output. We show
independent effect by complementing a test case
consisting of all true inputs with test cases that set
one and only one input false until each individual
input has been shown to influence the output.

Hence, a specific set of n+1 test cases is
needed to provide coverage for an n-input and gate.
These specific n+1 test cases meet the intent of
MC/DC by demonstrating that the and gate is
correctly implemented.

An example of the minimum testing required
for a three-input and gate (shown in Figure 1) is
given in Table 2. In this example, test case 1 in
Table 2 provides the coverage for (1) above, and
test cases 2-4 provide coverage for (2).

C

B

A

D

Figure 1. 3-input and gate

Table 2. Minimum Tests for a 3-input and Gate

Test Case Number 1 2 3 4
Input A T F T T
Input B T T F T
Input C T T T F

Output D T F F F

With respect to showing independent effect,
test cases 1 and 2 together show the independent
effect of A because the value of A is the only input

4

value that changes along with the outcome value
between those two test cases. Similarly, test cases 1
and 3 together show the independent effect of B;
and test cases 1 and 4 together show the
independent effect of C.

Testing an or Gate
Minimum testing to achieve MC/DC for an n-

input or gate requires the following:

(1) A single test case where all inputs are set
false with the output observed to be false.

(2) A set of test cases where each and every
input is set exclusively true with the output
observed to be true. This requires n test
cases for each n-input or gate.

These requirements are based on an or gate’s
sensitivity to a true input. Here again, n+1 specific
test cases are needed to test an n-input or gate.
These specific n+1 test cases meet the intent of
MC/DC by demonstrating that the or gate is
correctly implemented.

An example of the minimum testing required
for a three-input or gate (shown in Figure 2) is
given in Table 3. In this example, test case 1
provides the coverage for (1) while test cases 2-4
provide the coverage for (2). The test pairs that
show the independent effect of each input are
similar to those for the and gate.

C

B

A

D

Figure 2. 3-input or gate

Table 3. Minimum Tests for a 3-input or Gate

Test Case
Number

1 2 3 4

Input A F T F F
Input B F F T F
Input C F F F T

Output D F T T T

A Note About the xor Gate
The xor gate is different with respect to

MC/DC from the and and or gates. The and and or
gates each have only one possible minimum test set.
For the xor, Chilenski and Miller defined four
possible minimum test sets that provide MC/DC for
a 2-input xor gate: (TT, TF, FT), (TF, FT, FF),
(FT, TT, FF), and (TT, FF, TF).

Note, however, that an xor operation may be
viewed as a combination of and and or operations;
and, test criteria for the xor can be derived from the
minimum test criteria for the and and or operators.
The expression A xor B can be rewritten (A or B)
and not (A and B). This implementation of the xor
requires four test cases, (that is, exhaustive testing),
to provide MC/DC. In this case, analysis of this
implementation of xor suggests that exhaustive
testing of xor operations may be prudent.

The xor operation is used as an example to
illustrate our approach to evaluating MC/DC and,
incidentally, to demonstrate why exhaustive testing
may be desirable for xor operations.

Evaluation Approach
This section presents a practical approach for

evaluating whether a given set of requirements-
based test cases conforms to three of the four
requirements for MC/DC3:

• every decision in the program has taken all
possible outcomes at least once

• every condition in a decision in the program
has taken all possible outcomes at least once

• every condition in a decision has been
shown to independently affect that
decision’s outcome

The evaluation approach builds on the
minimum test cases for the and and or gates using
two concepts taken from logic circuit theory:
controllability and observability [7]. For software,
controllability can be described loosely as the
ability to set the values of an expression’s inputs in
order to test each logical operator (this corresponds

3 The fourth requirement for meeting MC/DC, testing of entry
and exit points, is common to many structural coverage
measures, and, as such, is not critical to a discussion of
MC/DC.

5

to meeting the minimum test criteria).
Observability refers to the ability to propagate the
output of a logical operator under test to an
observable point.

To evaluate MC/DC using a gate-level
approach, each logical operator in a decision in the
source code is examined to determine whether the
requirements-based tests have observably exercised
the operator using the minimum test criteria. This
approach involves the following five steps:

(1) Create a schematic representation of the
source code.

(2) Identify the test inputs used. Test inputs
are obtained from the requirements-based
tests of the software product.

(3) Eliminate masked test cases. A masked test
case for a specific gate is one whose results
are hidden from the observed outcome.

(4) Determine MC/DC based on the minimum
test criteria for each operator.

(5) Finally, examine the outputs of the tests to
confirm correct operation of the software.
The point is not to repeat the analysis of the
requirements-based test results, but rather
to confirm that the schematic representation
of the source code provides the same
results. If an expected result in the test case
does not match an output expected based on
the gate representation of the code, an error
is indicated, either in the source code or in
its schematic representation.

Each of these steps is described below.

Source Code Representation
In the first step of the evaluation process, a

schematic representation of the software is
generated. The symbols used to represent the
source code are not important, so long as they are
used consistently. The following example is used
to illustrate the steps of the evaluation method,
starting with the source code representation.

Consider the following line of Ada source
code:

Z := (A or B) and not (A and B);

This source code is shown schematically in
Figure 3.

Z

A

B

and1

not

or and2

Figure 3. Schematic representation of source
code

Although the example uses Ada code, the
evaluation approach applies to all source code
regardless of whether it is written in a high-level
language such as Ada or in assembly language.

Identification of Test Inputs
The next step of the process takes the inputs

from the requirements-based test cases and maps
them to the schematic representation. This provides
a view of the test cases and the source code in a
convenient format. Inputs and expected observable
outputs for the requirements-based test cases for the
example code are given in Table 4.

Table 4. Requirements-based Test Cases for
Example

Test Case Number 1 2 3
Input A T T F
Input B T F T

Output Z F T T

Recall that the source code in this example is
implementing an xor operation. The test cases
given in Table 4 provide MC/DC of an xor operator
according to Chilenski and Miller; hence the test
cases in Table 4 may be considered reasonable
requirements-based tests. Figure 4 shows the test
cases annotated on the schematic representation.
Note that intermediate results have also been
determined from the test inputs and shown on the
schematic representation.

6

FTT Z

A

B

and1

not

or and2

TTF

TFT

TTF

TFT

TFF

FTT

TTT

Figure 4. Schematic representation with test
cases

Knowing the intermediate results is important
because they provide the basis for determining
which test cases do or do not contribute to valid
MC/DC results. Test cases where the output is
masked do not contribute to achieving MC/DC.

Elimination of Masked Tests
Using the annotated figure, the requirements-

based tests cases that do not contribute (or count for
credit) towards achieving MC/DC can be identified.
Once those test cases are eliminated from
consideration, the remaining test cases can be
compared to the minimum test criteria to determine
if they are sufficient to meet the MC/DC criteria.

This step is necessary to achieve observability.
Only test cases whose outputs are observable (at Z
in this example)4 can be counted for credit towards
MC/DC. An electrical analogy of “shorting”
various “control inputs” such that they allow the
“input of interest” to be transmitted through to the
output is helpful in describing several key
principles of observability.

To introduce the first principle, consider an
and gate. Since we will concentrate on only one
input at a time, the experimental input will be
referred to as the input of interest and the other
inputs as the control inputs. The truth table for an
and gate in Table 5 shows that the output of the and
gate will always be the input of interest if the
control input to the and gate is true. The state of
the input of interest is indeterminate at the output in
the case where the control input is false.

4 This assumes that no intermediate results were captured as
part of the test results.

Table 5. Control Input to an and Gate

Input of Interest Control
Input

Output

T T T (input of interest)
F T F (input of interest)

T or F (don’t care) F F

This leads to Principle 1: W and true = W

Thus any and gate may be viewed as a direct
path from the input of interest to the output
whenever the other input(s) to the and gate are true.

Taking a similar approach with the or gate
yields the second principle. The truth table for an
or gate in Table 6 shows that the output of the or
gate will always be the input of interest if the
control input to the or gate is false. The state of the
input of interest is indeterminate at the output in the
case where the control input is true.

Table 6. Control Input to an or Gate

Input of Interest Control
Input

Output

T F T (input of interest)
F F F (input of interest)

T or F (don’t care) T T

Hence, Principle 2: W or false = W

That is, any or gate may be viewed as a direct
path from the input of interest to the output
whenever the other input(s) to the or gate are false.

To determine which test cases are masked, it is
easiest to work backwards through the schematic
diagram. Consider again the expression (A or B)
and not (A and B) shown in Figure 4. The false
input to the gate labeled and2 masks the
corresponding input coming from the or gate. That
is, the output of the or gate for test case 1 cannot be
determined by looking at the results at Z. Hence
test case 1 cannot be counted for credit towards
MC/DC for the or gate. Figure 5 shows that test
case 1 is eliminated for the or gate. Note that no
test cases are masked for the and1 gate.

7

FTT Z

A

B

and1

not

or and2

TTF

TFT

TTF

TFT

TFF

FTT

TTT

Figure 5. Schematic representation with masked
test cases

Test cases that are not identified as masked test
cases are considered valid for (or count for credit
towards) MC/DC. In Figure 5, test cases 1, 2, and 3
are valid for the and1 gate, not gate, and the and2
gate. But, only test cases 2 and 3 are valid for the
or gate.

Determination of MC/DC
The next step is to determine whether the valid

test cases are sufficient to provide MC/DC. Here
sufficiency is decided by examining the individual
gates. Starting with the and1 gate, the valid test
cases are compared with the minimum test criteria
defined for that gate. The test combinations TT, TF,
and FT are needed here. In the example, test case 1
provides the TT test, test case 2 provides the TF
test, and test case 3 provides the FT test case.
Hence, test cases 1, 2, and 3 are sufficient to
provide MC/DC for the and1 gate.

Next, test combinations FF, TF, and FT are
needed for the or gate. In this example, test case 2
provides the TF test, test case 3 provides the FT
test. However, there is no test case for FF.

MC/DC is relevant to the not gate—but only
with respect to showing that the input takes on all
possible values. Showing independent effect does
not apply because the not operator only works with
a single operand. In this example, test case 1
provides a true input and both test cases 2 and 3
provide a false input to the not gate. This is
sufficient for MC/DC for the not operator.

Finally, the inputs to the and2 gate are checked
against the minimum test requirements. In this
case, test case 2 and 3 both provide a TT input, and
test case 1 provides a FT input. However, there is

no test case that provides a TF input. Hence, the
test cases in Table 4 are not sufficient to provide
MC/DC of this implementation of the xor
operation. These results are summarized in Table 6.

Table 6. Comparison of Minimum Tests with
Valid Tests

Gate Valid Test
Inputs

Missing Test
Cases

and1 TT Case 1
TF Case 2
FT Case 3

None

or TF Case 2
FT Case 3

FF

not T Case 1
F Cases 2 or 3

None

and2 TT Cases 2 or 3
FT Case 1

TF

The test suite in Table 4 should be
supplemented with an additional test case, FF, to
provide full MC/DC of the source code. A FF test
case will provide a FF input to the or gate, and will
also give a TF input to the and2 gate. Adding the
FF test case implies that exhaustive testing of the
input combinations for this example is required to
provide MC/DC—hence the previous
recommendation that exhaustively testing an xor
operation is justifiable.

Output Confirmation
The final step of the evaluation process is to

confirm that the expected results are actually
obtained by the tests. The output confirmation step
is included as a reminder that showing compliance
with the MC/DC objective is done in conjunction
with the determination of the proper requirements-
based test results. In the example, the outputs
determined by following the test inputs through the
logic gates match the expected results.

The five steps of the evaluation method may
be used as the MC/DC analysis method for any
source code. However, if performed manually for
an entire project, the method is labor intensive.

8

Instead, this approach is intended to give
certification authorities or verification analysts a
simple method to manually confirm that test cases
or tools have given the proper results. The steps
can also be used to help confirm that an automated
tool properly assesses MC/DC. A Practical
Tutorial on Modified Condition/Decision Coverage
[8] provides further details and examples of the 5-
step process. The tutorial also discusses important
factors to consider in selecting and qualifying a
structural coverage tool and tips for appraising an
applicant’s life cycle data relevant to MC/DC.

Error Sensitivity
As noted by Dupuy and Leveson [5], the

requirement to meet the MC/DC objective for level
A software is considered controversial by many
due, in part, to perceived ineffectiveness in
detecting errors. This raises the issue of what types
of errors will be detected by a test set that achieves
MC/DC.

Structural coverage analysis using the
evaluation approach presented above can identify
errors or shortcomings in two ways. First, the
analysis may show that the code structure was not
exercised sufficiently by the requirements-based
tests to meet the MC/DC criteria. According to
section 6.4.4.3 of DO-178B [1], insufficient
coverage may result from shortcomings in
requirements-based test cases or procedures,
inadequacies in software requirements, dead code,
or deactivated code. Section 6.4.4.3 of DO-178B
provides guidance for each of these.

The evaluation approach may also identify
errors in the source code. Here we consider three
classes of coding errors:

• Operator errors: where an incorrect operator
is used; e.g., an or is used instead of an and

• Operand errors: where an incorrect operand
is used; e.g., a C is used instead of a B (where
C and B are both Boolean typed variables)

• Grouping errors: where operands and
operators are incorrectly grouped.

Further, only single instances of each type of
error are considered here.

Because MC/DC is a measure of the adequacy
of requirements-based testing, the analysis of error

sensitivity proceeds by examining whether test
cases, designed to provide MC/DC of a logical
requirement, will indicate if there is an error in the
source code. Comparing truth tables for a correct
and an incorrect expression can show whether a
given test set is likely to catch an error in a logical
expression. For this analysis, it does not matter
whether the conditions in the truth tables are simple
conditions or represent more complex
subexpressions.

The following subsections consider each of the
three error classes.

Operator Errors
A test set that provides MC/DC of a logical

requirement is likely to catch single operator errors
in the source code (that is, incorrectly coding one
operator in a logical expression), assuming that the
minimum test set to provide MC/DC for the xor
case includes the TT test case. Having a
requirement to evaluate A and B, while having
corresponding source code that incorrectly
evaluates A or B, is an example of a simple
operator error.

Table 7 shows the minimum test requirements
for three simple logical expressions.

Table 7. Truth Tables for Simple Expressions

A B A and B A or B A xor B
T T T F**
T F F T T
F T F T T
F F F F

** For this analysis, any three test cases are
considered valid for MC/DC as long as TT is
included.

In the case where the correct code should
contain A and B, the minimum test set expected to
provide MC/DC for the and operator is (TT, TF,
FT). That is, the requirements-based test cases are
expected to contain tests that will provide the inputs
(TT, TF, and FT) to the statement containing A and
B. In this case, the test cases should detect when
either an or or an xor is incorrectly coded for an
and because the actual results and the expected
results should not match for the TF and FT tests, as

9

shown in Table 7. The TT test case will also detect
an implementation of xor for this example.

In the case where the correct code should
contain A or B, the requirements-based tests are
expected to contain (FF, TF, FT) to provide
MC/DC. Such test cases should detect when an and
is incorrectly coded for the or because the actual
results and the expected results should not match
for the TF and FT tests. An incorrect
implementation using an xor is also detected when
using the rule that the minimum test set for an xor
must contain the TT test case. In absence of the TT
test case requirement for the xor, the expected
results and the actual results will match if the code
incorrectly contains A xor B. If incorrectly coding
or for xor, or vice versa, is a problem in
development, requiring exhaustive testing of xor
operations may be a reasonable step for detecting
that error.

Operand Errors
The next error class is operand errors. This

error occurs when one condition in an expression is
incorrect; for example, when a requirement for
evaluating A and B is incorrectly coded A and C,
where B and C are two distinct conditions.

Table 8 shows all possible test sets with inputs
A, B, and C that provide MC/DC for the expression
A and B.

Table 8. Test Sets for A and B

Test Set Number Test Cases (A, B, C)
1 TTT, TFT, FTT
2 TTT, TFT, FTF
3 TTT, TFF, FTT
4 TTF, TFT, FTT
5 TTT, TFF, FTF
6 TTF, TFT, FTF
7 TTF, TFF, FTT
8 TTF, TFF, FTF

Test cases in test sets 1, 2, 4, 6, 7, and 8 in
Table 8 will fail to provide the expected results if
the code incorrectly has A and C, thus catching the
error. This leaves two test sets to examine, 3 and 5.

In test set 3, the values for B and C are the
same in each test case; so, the error will not be
detected by looking at the output. For test set 5, the
coding error will be caught in the coverage analysis
because test set 5 fails to meet the minimum test
criteria for A and C.

Similarly, if A or B is incorrectly coded A or
C, only one of eight possible test sets will fail to
detect the error—the test set where B and C have
exactly the same values. Hence, a test set that
provides MC/DC at the requirements level should
provide assurance that the source code does not
have single operand errors—except for the case
where the two conditions in question are tested with
the same values in each test case.

Grouping Errors
The sensitivity analysis for single operator and

operand errors clearly shows when those errors will
be caught with a test set that provides MC/DC of
the requirements. For grouping errors (that is,
errors where parentheses are misplaced so as to
change the functionality of an expression), there is
no clear pattern of cases when the error will or will
not be caught. Here we look at expressions with
three operands and two distinct operators.

Consider the expression A and (B or C). A
grouping error for this expression would be (A and
B) or C—which results in a different Boolean
function. The test set (TTF, TFF, TFT, FTF)
provides MC/DC for the correct expression A and
(B or C). This test set also provides MC/DC of the
improperly coded expression, and produces the
expected results when executed. That is, this
particular test set will not identify the coding error.

Similarly, consider the expression A or (B and
C), which can be incorrectly coded as (A or B) and
C. The test set (FTT, FFT, FTF, TFT) gives the
same test outputs for each expression and provides
MC/DC for each expression. Again, the coding
error will not be detected.

This analysis of error sensitivity is not
intended to be comprehensive. However, this
analysis does provide some insight into the types of
errors one might expect to identify with a test set
that provides MC/DC of a logical requirement. In
general, such test sets appear to be more sensitive to
operand and operator errors than grouping errors.

10

Additional discussion by Chilenski of
theoretical aspects of MC/DC, including error
sensitivity, can be found in [9, 10]. Experiments
related to error sensitivity, such as comparing the
frequency of logic errors in short versus long
Boolean expressions, are proposed in Comments on
Modified Condition/Decision Coverage for
Software Testing [11].

Summary
This paper provided a brief introduction to a

method for assessing whether requirements-based
testing of a level A software product achieves the
DO-178B objective for MC/DC. This approach
enables a certification authority or verification
analyst to effectively evaluate MC/DC claims on a
level A software project without the aid of an
automated tool, and can assist in selection,
qualification, and approval of structural coverage
analysis tools. Further, this paper provided a quick
look at the ability of MC/DC-compliant test sets to
detect three classes of simple coding errors.

References
[1] RTCA, Inc., December 1992, RTCA/DO-178B,
Software Considerations in Airborne Systems and
Equipment Certification, Washington, D. C.

[2] U. S. Department of Transportation, Federal
Aviation Administration, January 11, 1993,
Advisory Circular #20-115B.

[3] Chilenski, John Joseph, Steven. P. Miller,
September 1994, Applicability of modified
condition/decision coverage to software testing,
Software Engineering Journal, Vol. 7, No. 5, pp.
193-200.

[4] Hayhurst, Kelly J., Cheryl A. Dorsey, John C.
Knight, Nancy G. Leveson, G. Frank McCormick,
August 1999, Streamlining Software Aspects of
Certification: Report on the SSAC Survey,
NASA/TM-1999-209519.

[5] Dupuy, Arnaud, Nancy Leveson, October 2000,
An Empirical Evaluation of the MC/DC Coverage
Criterion on the HETE-2 Satellite Software, Digital
Avionics Systems Conference.

[6] RTCA, Inc., September 13, 2000, RTCA/DO-
248A, Second Annual Report for Clarification of

DO-178B "Software Considerations in Airborne
Systems and Equipment Certification", Washington,
D. C.

[7] Abramovici, Miron, Melvin A. Breuer, Arthur
D. Friedman, 1990, Digital Systems Testing and
Testable Design, Computer Science Press.

[8] Hayhurst, Kelly J., Dan S. Veerhusen, John J.
Chilenski, Leanna K. Rierson, May 2001, A
Practical Tutorial on Modified Condition/Decision
Coverage, NASA/TM-2001-210876.

[9] Chilenski, John Joseph, April 2001, An
Investigation of Three Forms of the Modified
Condition Decision Coverage (MCDC) Criterion,
FAA Tech Center Report DOT/FAA/AR-01/18.

[10] Chilenski, John Joseph, January 2001, MCDC
Forms (Unique-Cause, Masking) versus Error
Sensitivity , White paper submitted to NASA
Langley Research Center under contract NAS1-
20341.

[11] White, Allan L., March 2001, Comments on
Modified Condition/Decision Coverage for
Software Testing, 2001 IEEE Aerospace
Conference proceedings.

