
Combinatorial Software Testing Covering Arrays

Combinatorial Testing and Covering Arrays

Lucia Moura
School of Electrical Engineering and Computer Science

University of Ottawa
lucia@eecs.uottawa.ca

Winter 2017

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Software and Network Testing

We want to test a system:

a program

a circuit

a package that integrates several pieces of software

different platforms where a package needs to run correctly

a highly configurable software

a GUI interface

a cloud application

We would like a test suite that gives a good coverage of the
input parameter space in order to detect the maximum number of
errors/bugs/faults.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Combinatorial Software Testing

First we isolate the system parameters and its possible values

the input parameters of a program and its possible values

5, 10, 20, 25, 30
<100,000

[100,000-250,000)
[250,000-450,000)

> 450,000

11 opções

6 opções

17 opções

(5, 4, 11, 17, 6)
the inputs of a circuit: 5 binary inputs

Introduction 6

Example 1.1.2. For our second example, we look at the circuit diagram in Figure 1.1.

This is a small circuit, with only five inputs - a, b, c, d, and e - each of one bit, and

three outputs. This circuit could be exhaustively tested using 25 = 32 tests, but based

on the fact that some of the inputs do not interact, doing so is unnecessary. We instead

show that we can fully test the circuit using only eight tests by using a variable strength

covering array. We represent the circuit as a hypergraph, with one vertex for each input,

and one hyperedge for each output, as shown in Figure 1.2.

AND

NAND

AND
NOT

XNOR

XOR

a

b

c

d

e

x

y

z

Figure 1.1: An example of a small circuit with five inputs and three outputs.

Figure 1.2: The hypergraph that arises from the circuit in Figure 1.1, taking each input

as a vertex and each output as a hyperedge over the inputs contributing to its value.

We now give a variable strength covering array for the circuit that requires only eight

different test cases, with the guarantee that for each output, every possible combination

of inputs have been tested together in some test case.

Example 1.1.3. A third example demonstrates the use of variable strength covering

arrays to systems testing. Assume that we have a simple 3-tier architecture system as

(2, 2, 2, 2, 2)
the components of a platform and its configurations

Component
Web Browser Operating Connection Printer

System Type Config
Config: Netscape(0) Windows(0) LAN(0) Local (0)

IE(1) Macintosh(1) PPP(1) Networked(1)
Other(2) Linux(2) ISDN(2) Screen(2)

Table 3: Four components, each with 3 configurations

Test Case Browser OS Connection Printer

1 NetScape Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape Macintosh PPP Screen
4 IE Windows ISDN Screen
5 IE Macintosh LAN Networked
6 IE Linux PPP Local
7 Other Windows PPP Networked
8 Other Linux LAN Screen
9 Other Macintosh ISDN Local

Table 4: Test Suite to Cover all Pairs from Table 3

agriculture and manufacturing [64]. It has entered the software testing community, appear-
ing in practitioner’s guidebooks [70, 89], and provided in simple spreadsheet formats [40, 41].
The use of covering arrays in software testing was pioneered by Mandl [83] and Brownlie et
al. [9, 102], and statistical foundations were explored in [46, 47, 48, 49, 82, 91]. Empirical
results indicate that testing of all pairwise interactions in a software system indeed finds a
large percentage of existing faults [45, 78]. Indeed, Burr et al. [11] provide more empirical
results to show that this type of test coverage leads to useful code coverage as well. Dalal
et al. present empirical results to argue that the testing of all pairwise interactions in a
software system finds a large percentage of the existing faults [45]. Dunietz et al. link the
effectiveness of these methods to software code coverage. They show that high code block
coverage is obtained when testing all two-way interactions, but higher subset sizes are needed
for good path coverage [54]. Kuhn et al. examined fault reports for three software systems.
They show that 70% of faults can be discovered by testing all two-way interactions, while
90% can be detected by testing all three way interactions. Six-way coverage was required in
these systems to detect 100% of the faults reported [78]. This study was followed by similar
experiments, such as one of 109 software-controlled medical devices that were recalled by
the U.S. Food and Drug Administration (FDA) [79]. These experiments found that 97% of
the flaws in these 109 cases could be detected with pair-wise testing of parameter settings.
Only three devices required coverage higher than two.

Williams et al. [132] quantify the coverage for a particular interaction strength. For
instance, if we have four factors, any new test case can contribute at most

(
4
2

)
, or 6 new

31

(3, 3, 3, 3)
Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Pairwise Testing

Testing a system with k = 4 components each having v = 3 values:
Component

Web Browser Operating Connection Printer
System Type Config

Config: Netscape(0) Windows(0) LAN(0) Local (0)
IE(1) Macintosh(1) PPP(1) Networked(1)

Other(2) Linux(2) ISDN(2) Screen(2)

Table 3: Four components, each with 3 configurations

Test Case Browser OS Connection Printer

1 NetScape Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape Macintosh PPP Screen
4 IE Windows ISDN Screen
5 IE Macintosh LAN Networked
6 IE Linux PPP Local
7 Other Windows PPP Networked
8 Other Linux LAN Screen
9 Other Macintosh ISDN Local

Table 4: Test Suite to Cover all Pairs from Table 3

agriculture and manufacturing [64]. It has entered the software testing community, appear-
ing in practitioner’s guidebooks [70, 89], and provided in simple spreadsheet formats [40, 41].
The use of covering arrays in software testing was pioneered by Mandl [83] and Brownlie et
al. [9, 102], and statistical foundations were explored in [46, 47, 48, 49, 82, 91]. Empirical
results indicate that testing of all pairwise interactions in a software system indeed finds a
large percentage of existing faults [45, 78]. Indeed, Burr et al. [11] provide more empirical
results to show that this type of test coverage leads to useful code coverage as well. Dalal
et al. present empirical results to argue that the testing of all pairwise interactions in a
software system finds a large percentage of the existing faults [45]. Dunietz et al. link the
effectiveness of these methods to software code coverage. They show that high code block
coverage is obtained when testing all two-way interactions, but higher subset sizes are needed
for good path coverage [54]. Kuhn et al. examined fault reports for three software systems.
They show that 70% of faults can be discovered by testing all two-way interactions, while
90% can be detected by testing all three way interactions. Six-way coverage was required in
these systems to detect 100% of the faults reported [78]. This study was followed by similar
experiments, such as one of 109 software-controlled medical devices that were recalled by
the U.S. Food and Drug Administration (FDA) [79]. These experiments found that 97% of
the flaws in these 109 cases could be detected with pair-wise testing of parameter settings.
Only three devices required coverage higher than two.

Williams et al. [132] quantify the coverage for a particular interaction strength. For
instance, if we have four factors, any new test case can contribute at most

(
4
2

)
, or 6 new

31

Test all possibilities: 34 = 81 tests.

Pairwise testing can be done with only 9 tests.

Component
Web Browser Operating Connection Printer

System Type Config
Config: Netscape(0) Windows(0) LAN(0) Local (0)

IE(1) Macintosh(1) PPP(1) Networked(1)
Other(2) Linux(2) ISDN(2) Screen(2)

Table 3: Four components, each with 3 configurations

Test Case Browser OS Connection Printer

1 NetScape Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape Macintosh PPP Screen
4 IE Windows ISDN Screen
5 IE Macintosh LAN Networked
6 IE Linux PPP Local
7 Other Windows PPP Networked
8 Other Linux LAN Screen
9 Other Macintosh ISDN Local

Table 4: Test Suite to Cover all Pairs from Table 3

agriculture and manufacturing [64]. It has entered the software testing community, appear-
ing in practitioner’s guidebooks [70, 89], and provided in simple spreadsheet formats [40, 41].
The use of covering arrays in software testing was pioneered by Mandl [83] and Brownlie et
al. [9, 102], and statistical foundations were explored in [46, 47, 48, 49, 82, 91]. Empirical
results indicate that testing of all pairwise interactions in a software system indeed finds a
large percentage of existing faults [45, 78]. Indeed, Burr et al. [11] provide more empirical
results to show that this type of test coverage leads to useful code coverage as well. Dalal
et al. present empirical results to argue that the testing of all pairwise interactions in a
software system finds a large percentage of the existing faults [45]. Dunietz et al. link the
effectiveness of these methods to software code coverage. They show that high code block
coverage is obtained when testing all two-way interactions, but higher subset sizes are needed
for good path coverage [54]. Kuhn et al. examined fault reports for three software systems.
They show that 70% of faults can be discovered by testing all two-way interactions, while
90% can be detected by testing all three way interactions. Six-way coverage was required in
these systems to detect 100% of the faults reported [78]. This study was followed by similar
experiments, such as one of 109 software-controlled medical devices that were recalled by
the U.S. Food and Drug Administration (FDA) [79]. These experiments found that 97% of
the flaws in these 109 cases could be detected with pair-wise testing of parameter settings.
Only three devices required coverage higher than two.

Williams et al. [132] quantify the coverage for a particular interaction strength. For
instance, if we have four factors, any new test case can contribute at most

(
4
2

)
, or 6 new

31

(example from Colbourn 2004)

Covering Arrays with strength t = 2, k = 4 parameters, v = 3 values for

each, can cover all pairwise interactions with N = 9 tests.
Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Pairwise Testing

Covering array:
strength t = 2, k = 5 paramters, values (3, 2, 2, 2, 3), N = 10 tests

Practical Combinatorial Testing

 7

selecting input values to exercise the application in each scenario, possibly supplementing
these tests with unusual or suspected problem cases. In the combinatorial approach to input
data selection, a test data generation tool is used to cover all combinations of input values
up to some specified limit. One such tool is ACTS (described in Appendix C), which is
available freely from NIST.

2.1.1 Configuration Testing

Many, if not most, software systems have a large number of configuration parameters.

Many of the earliest applications of combinatorial testing were in testing all pairs of system
configurations. For example, telecommunications software may be configured to work
with different types of call (local, long distance, international), billing (caller, phone card,
800), access (ISDN, VOIP, PBX), and server for billing (Windows Server, Linux/MySQL,
Oracle). The software must work correctly with all combinations of these, so a single test
suite could be applied to all pairwise combinations of these four major configuration items.
Any system with a variety of configuration options is a suitable candidate for this type of
testing.

Configuration coverage is perhaps the most developed form of combinatorial testing.

It has been used for years with pairwise coverage, particularly for applications that must be
shown to work across a variety of combinations of operating systems, databases, and
network characteristics.

For example, suppose we had an application that is intended to run on a variety of

platforms comprised of five components: an operating system (Windows XP, Apple OS X,
Red Hat Enterprise Linux), a browser (Internet Explorer, Firefox), protocol stack (IPv4,
IPv6), a processor (Intel, AMD), and a database (MySQL, Sybase, Oracle), a total of

32223 ⋅⋅⋅⋅ = 72 possible platforms. With only 10 tests, shown in Table 1, it is possible to
test every component interacting with every other component at least once, i.e., all possible
pairs of platform components are covered.

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL
2 XP Firefox IPv6 AMD Sybase
3 XP IE IPv6 Intel Oracle
4 OS X Firefox IPv4 AMD MySQL
5 OS X IE IPv4 Intel Sybase
6 OS X Firefox IPv4 Intel Oracle
7 RHEL IE IPv6 AMD MySQL
8 RHEL Firefox IPv4 Intel Sybase
9 RHEL Firefox IPv4 AMD Oracle
10 OS X Firefox IPv6 AMD Oracle

Table 1. Pairwise test configurations

(example taken from Khun, Kacker and Lei 2010)

testing all possibilities (t = 5): 32 × 23 = 72 tests
pairwise testing (t = 2): 10 tests

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Pairwise Testing

Covering array:
strength t = 2, k = 5 paramters, values (3, 2, 2, 2, 3), N = 10 tests

(example taken from Khun, Kacker and Lei 2010)

testing all possibilities (t = 5): 32 × 23 = 72 tests
pairwise testing (t = 2): 10 tests

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Why to use pairwise testing?

Economy: we use a minimal number of tests.
example: k = 20 parameters with v = 10 values each.
testing all combinations:1020 tests (in general = vk)
pairwise testing:155 tests (in general O(v log k))

Robustness: we have good coverage in practice.
most software errors (75%-80%) are caused by certain
parameter values or by the interaction of two of values.
“Evaluating FDA recall class failures in medical devices... 98% showed that the problem could have been
detected by testing the device with all pairs of parameter settings.” (Wallace and Kuhn, 2001)
Cohen, Dalal, Fredman, Patton (1996) - AETG software
Dalal, Karunanithi, Leaton, Patton, Horowicz (1999)
Kuhn and Reilly (2002)

covering pairs imply other coverage measures.
“Our initial trial of this was on a subset Nortel’s internal e-mail system where we able cover 97% of
branches with less than 100 valid and invalid testcases, as opposed to 27 trillion exhaustive test cases.”
(Burr and Young, 1998)
“The block coverage obtained for [pairwise] was comparable with that achieved by exhaustively testing all
factor combinations ...” (Dunietz et al., 1997)
Cohen, Dalal, Fredman, Patton (1996, 1997) - AETG software

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Increasing the coverage strength (t-way coverage)

we can use intermediate strength values between t = 2
(pairwise) and t = k (testing full parameter space).
the “tradeoff” is that increasing t, we increase robustness, but
also the number of tests
studies show that usually t ∈ [2, 6] is sufficient to detect all
the software errors Kuhn, Wallace e Gallo (2004)

95AUGUST 2009

by three-, four-, five,- and six-way
interactions. Figure 2 summarizes
these results. Thus far, a fault trig-
gered by a seven-way interaction has
not appeared.

With the Web server application,
for example, roughly 40 percent of
the failures were caused by a single
value, such as a !le name exceeding
a certain length; another 30 percent
were triggered by the interaction of
two parameters; and a cumulative
total of almost 90 percent were trig-
gered by three or fewer parameters.
While not conclusive, these results
suggest that combinatorial methods
can achieve a high level of thorough-
ness in software testing.

because it only guarantees that all
pairs of parameter values will be
tested. A particular four-way com-
bination of values is statistically
unlikely to occur in a test set that only
ensures two-way combination cover-
age; to ensure thorough testing of
complex applications, it is necessary
to generate test suites for four-way or
higher-degree interactions.

Investigations of other applica-
tions found similar distributions of
fault-triggering conditions. Many
faults were caused by a single
parameter, a sma l ler propor-
tion resulted from an interaction
between two parameter values, and
progressively fewer were triggered

productivity more than doubling on
average and more than tripling in
three projects. The groups using pair-
wise testing also achieved the same
or higher quality in all 10 projects;
all of the defects identified by the
teams using manual test case selec-
tion methods were identi!ed by the
teams using combinatorial methods.
In five projects, the combinatorial
teams found additional defects that
had not been identi!ed by the teams
using manual methods.

These proof-of-concept projects
successfully demonstrated to the
teams involved that manual meth-
ods of test case selection were not
nearly as effective as pairwise com-
binatorial methods for finding the
largest number of defects in the least
amount of time.

TESTING HIGHER-DEGREE
INTERACTIONS

Other empirical investigations
have concluded that from 50 to 97
percent of software faults could be
identified by pairwise combinato-
rial testing. However, what about the
remaining faults? How many failures
could be triggered only by an unusual
interaction involving more than two
parameters?

In a 1999 study of faults arising
from rare conditions, the National
Institute of Standards and Technology
reviewed 15 years of medical device
recall data to determine what types of
testing could detect the reported faults
(D.R. Wallace and D.R. Kuhn, “Failure
Modes in Medical Device Software:
An Analysis of 15 Years of Recall
Data,” Int’l J. Reliability, Quality, and
Safety Eng., Dec. 2001, pp. 351-371).
The study found one case in which an
error involved a four-way interaction
among parameter values: demand
dose = administered, days elapsed
= 31, pump time = unchanged, and
battery status = charged.

Pairwise combinatorial testing
is unlikely to detect faults like this

Manual Pairwise

Testing method(a)

Defects
found

per hour
2.4X

higher

Manual Pairwise

Testing method(b)

Total
defects

found
13%

higher

Figure 1. Summary of results from 10 projects. Pairwise combinatorial test case
selection versus manual test case selection: (a) testing e!ciency and (b) testing
quality.

 25

0

 50

 75

100

 1 2 3 4 5 6

Cu
mu

lat
ive

 pe
rce

nt

Interactions

Medical devices
Browser
Web server
NASA distributed database

Figure 2. Cumulative error detection rate for fault-triggering conditions. Many faults
were caused by a single parameter value, a smaller proportion resulted from an
interaction between two parameter values, and progressively fewer were triggered
by three-, four-, "ve, and six -way interactions.

Kuhn, Wallace e Gallo (2004)
Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering Arrays

t-way combinatorial testing requires covering arrays of strength t
strength t = 3; v = 2 symbols; k = 10 columns; N = 13 rows

if it contains the minimum possible number of rows. Various authors transpose the array in
the definition, and of course this is a matter of personal preference. In our discussions here,
we employ the N × k format, but occasionally construct the tranposed covering array.

Here is an example of a covering array of strength three with ten factors having two levels
each. It has N = 13 rows.

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

This combinatorial object is fundamental in developing interaction tests when all factors
have an equal number of levels. However, systems are typically not composed of components
(factors) that each have exactly the same number of parameters (levels). To remove this
limitation of covering arrays, the mixed-level covering array can be used.

A mixed level covering array MCAλ(N ; t, k, (v1, v2, . . . , vk)) is an N × k array. Let
{i1, . . . , it} ⊆ {1, . . . , k}, and consider the subarray of size N×t obtained by selecting columns
i1, . . . , it of the MCA. There are

∏t
i=1 vi distinct t-tuples that could appear as rows, and an

MCA requires that each appear at least once. We use the notation CAN(t, k, (v1, v2, . . . , vk))
to denote the smallest N for which such a mixed covering array exists.

An early investigation of covering arrays appears implicitly in Marczewski [84]. Rényi
[105] determined sizes of covering arrays for the case t = v = 2 when N is even. Kleitman
and Spencer [73] and Katona [71] independently determined covering array numbers for all
N when t = v = 2. They showed that N grows as follows:

k =

(
N − 1

$N
2
%

)

For large k, N grows logarithmically. The construction is straightforward. Form a matrix
in which the columns consist of all distinct binary N -tuples of weight $N

2
% that have a 0 in

the first position. In 1990 Gargano, Körner and Vaccaro [58] gave a probabilistic bound
when t = 2 and v > 2:

N =
v

2
logk(1 + o(1))

Now we explore a dual formulation. Let C be an N ×k covering array. Suppose that rows
are indexed by a set R of size N . Then each column can be viewed as a partition of R into

2

Definition (Covering Arrays)

A covering array of strength t, k factors, v symbols per factor and
size N , denoted CA(N ; t, k, v), is an N × k matrix with symbols
from a v-ary alphabet G such that in each t×N subarray, each
t-tuple in Gt is covered at least once.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering Arrays

t-way combinatorial testing requires covering arrays of strength t
strength t = 3; v = 2 symbols; k = 10 columns; N = 13 rows

Definition (Covering Arrays)

A covering array of strength t, k factors, v symbols per factor and
size N , denoted CA(N ; t, k, v), is an N × k matrix with symbols
from a v-ary alphabet G such that in each t×N subarray, each
t-tuple in Gt is covered at least once.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering Array Minimization

Given t (strength), k (number of paramters) and v (#values).

Minimize N (#tests)

CAN(t, k, v) = min{N : there exists a CA(N ; t, k, v)}.

Covering array logarithmic growth

CAN(t = 2, k, v = 2) = {minN :
(
N−1
dN/2e

)
≥ k} =

log k(1 + o(1)) (Katona 1973, Kleitman and Spencer 1973)

t = 2, v > 2 fixed, k →∞:
CAN(t = 2, k, v) = v

2 log k(1 + o(1))
(Gargano, Korner and Vaccaro 1994)

CAN(t, k, v = 2) ≤ 2ttO(log t) log k (Naor et al 1993,1996,1998)

CAN(t, k, v) ≤ vt(t− 1) log k(1 + o(1))
(Godbole, Skipper and Sunley 1996)

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering array minimization and logarithmic growth

Given t (strength), k (number of parameters) and v (#values).

Minimize N (#tests)

CAN(t, k, v) = min{N : there exists a CA(N ; t, k, v)}.

For fixed v and t CAN(t, k, v) = O(log k).

Use the greedy density method (Bryce & Colbourn 2007).
One-test-at-a-time greedy method that garantees N = O(log k).

Excellent for software testing: #tests grows with the log of the
#parameters!

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Construction of (minimum/small) covering arrays

combinatorial methods: recursive and direct
Survey: Charlie Colbourn, “Combinatorial Aspects of Covering
Arrays”, 2004 (34 pages)

algorithms

greedy methods:
• AETG (D. Cohen, Dalal, Fredman, Patton 1996, 1997),
one-test-at-a-time, tries to approximate logarithmic growth
• greedy density method (Bryce e Colbourn 2007),
one-test-at-a-time, logarithmic guaranty
• IPOG algoritm (J. Lei), ACTS tool/NIST (Khun and
Kacker): alternates row growth and column growth
heuristic methods
• tabu search: Zekaoui (2006), Torres-Jimenez (2012)
• simulated annealing: M. Cohen (2003-2008), Torres-Jimenez
(2010-2012)

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Covering Array Construction

Practical, more flexible methods:
greedy methods (fast, number of tests is not optimized)
heuristic search (slower, number of tests is smaller)

Method to get the best possible covering arrays:
select the best results, using a combination of:
good ingredients (direct constructions or heuristic searches)
+ the best recursive constructions

See table maintained by Colbourn with the best known sizes
of covering arrays.

Combinatorial Testing and Covering Arrays Lucia Moura

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

Combinatorial Software Testing Covering Arrays

Example of good ingredients to use in recursive
constructions

orthogonal arrays: CA(N = q2; t = 2, k ≤ q + 1, v = q)
(Bush method using finite fields Fq)

0000
0122
1220
2202
2021
0211
2110
1101
1012

(optimal N)

method using LFSR for t = 3:
CA(N = 2q3 − 1; t = 3, k ≤ q2 + q + 1, v = q)
(Raaphorst, Moura, Stevens 2012)

(optimal or near optimal N)

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Example of a good recursive construction: Product
in this example: parameter t = 2

0
0
1
1
2
2

1
2
0
2
0
1

1
2

0
2

0
1

with 3 disjoint rows:CA(3,3)

0 0 0
1 1 1
2 2 2

OD(3,3)

size=6

1
1
1

0
0
0

2
2
2

0

0

0

1

1

1

2

2

2

0

0

0

1

1
1

2
2

2

0

0

0

1

1

1

2

2

2

1
1
1

0
0
0

2
2
2

0

0

0

1

1

1

2

2

2

0

0

0

1

1
1

2
2

2

0

0

0

1

1

1

2

2

2

1
1
1

0
0
0

2
2
2

0

0

0

1

1

1

2

2

2

0

0

0

1

1
1

2
2

2

0

0

0

1

1

1

2

2

2

0
0
1
1
2
2

0
0
1
1
2
2

0
0
1
1
2
2

0
0
1
1
2
2

1
2
0
2
0
1

1
2
0
2
0
1

1
2
0
2
0
1

1
2
0
2
0
1

1
2

0
2

0
1

1
2

0
2

0
1

1
2

0
2

0
1

1
2

0
2

0
1

1
1
1

0
0
0

2
2
2

0

0

0

1

1

1

2

2

2

0

0

0

1

1
1

2
2

2

0

0

0

1

1

1

2

2

2

size=9+6=15

CA(4,3)
1 2 3 4

9

8

7

6

5
4

3

2

1

size=9

1 2 3 4 5 6 7 8

CA(12=4*3,3)
9 10 11 12

CA(N1,k1,g)+OD(N2,k2,g)= CA(N1+N2,k1*k2,g)

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

Current State

Combinatorial sofware testing is useful and effective.

There are ready-to-use tools for use in applications:
• ACTS by NIST (EUA) t ≤ 6 (open source, free)
• Hexawise: comercial t ≤ 6 (SaaS, free for academic use,
nonprofit e companies up to 5 users; otherwise annual fee)
• Testcover.com: automatic generator (t = 2) (SaaS,
subscription: $100/month)

There is active research in the area of algorithms and
combinatorial constructions to optimize the number of tests
(rows) in covering arrays.
There are some efforts to deal with additional restrictions.

There is active research in the area of software testing
evaluating the effectiveness and adapting combinatorial
software testing to many types of applications.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

An in-depth view of covering array constructions

The rest of our study of covering arrays will use a survey talk
entitled ”Covering Arrays and Generalizations” (2006).

We will refer to the following sections covered there:

Introduction and summary of results.
Constructions: using OAs, blocksize recursive (product), direct
construction of binary CAs.
Covering array on graphs.
Other generalizations.

Combinatorial Testing and Covering Arrays Lucia Moura

Combinatorial Software Testing Covering Arrays

References

C. Colbourn, Combinatorial Aspects of Covering Arrays, Le
Matematiche (Catania), 2004. (survey article)

L. Moura, Covering Arrays and Generalizations, Survey
Talk, UPC seminar, November 2006.

Combinatorial Testing and Covering Arrays Lucia Moura

	Combinatorial Software Testing
	Covering Arrays

