

COMBINATORIAL TESTING

D. Richard Kuhn*, National Institute of Standards and Technology, kuhn@nist.gov

Raghu N. Kacker, National Institute of Standards and Technology, raghu.kacker@nist.gov

Yu Lei, University of Texas Arlington, ylei@uta.edu

Keywords: combinatorial testing; covering arrays; design of experiments; pairwise testing; pseudo-

exhaustive testing; software assurance; software testing; verification;

ABSTRACT

Combinatorial testing is a method that can reduce cost and improve test effectiveness significantly for

many applications. The key insight underlying this form of testing is that not every parameter contributes

to every failure, and empirical data suggest that nearly all software failures are caused by interactions

between relatively few parameters. This finding has important implications for testing because it suggests

that testing combinations of parameters can provide highly effective fault detection. This article

introduces combinatorial testing and how it evolved from statistical Design of Experiments approaches,

explains its mathematical basis, where this approach can be used in software testing, and measurements of

combinatorial coverage for existing test data.

INTRODUCTION

Recognizing that system failures can result from the interaction of conditions that might be innocuous

individually, software developers have long used “pairwise testing”, in which all possible pairs of

parameter values are covered by at least one test. However, many faults will be triggered only by an

unusual combinatorial interaction of more than two parameters. A medical device study found one case

in which a failure involved a four-way interaction between parameter values (1). Subsequent

investigations (2, 3, 4, 5) found a similar distribution of failure-triggering conditions: usually, many were

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
1

mailto:ylei@uta.edu
mailto:raghu.kacker@nist.gov
mailto:kuhn@nist.gov

caused by a single parameter value, a smaller proportion resulted from an interaction between two

parameter values, and progressively fewer were triggered by 3, 4, 5, and 6-way interactions. These

results suggest that combinatorial testing which exercises high degree (4-way or above) combinatorial

interactions is necessary to reach a higher level of software assurance. If we know from experience that t

or fewer variables are involved in failures for a particular application type and we can test all t-way

combinations of discrete variable settings, then we can have reasonably high confidence that the

application will function correctly.

The key ingredient for this form of testing is known as a covering array, a mathematical object in which

all t-way combinations of parameter values are covered at least once (6, 7, 8). Generating covering arrays

for complex interactions (beyond pairwise) is a difficult problem, but algorithms have been developed

that make it possible to generate covering arrays several orders of magnitude faster than previous

methods, making up to 6-way covering arrays tractable for many applications. While the most basic form

of combinatorial testing – pairwise – is well developed, it is only in the past few years that efficient

algorithms for complex covering arrays – for up to 6-way coverage – have become available. New

algorithms, coupled with fast, inexpensive processors, are making sophisticated combinatorial testing a

practical approach that may hold the promise of better software testing at a lower cost. This article

reviews the empirical and mathematical basis for combinatorial testing and explains its benefits and

tradeoffs in practice. The first section reviews the development of combinatorial testing from the

statistical field of Design of Experiments (DoE), differences with traditional DoE, and the empirical basis

for the application of combinatorial methods to software testing. The second section reviews practical use

of these methods and their application in different types of testing problems. A concluding section

discusses recent developments and some active research areas.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
2

THE DEVELOPMENT OF COMBINATORIAL SOFTWARE TESTING

Combinatorial testing for software has its roots in the statistical field of design of experiments (DoE).

DoE is a statistical methodology for conducting controlled experiments in which a system is exercised

with carefully chosen parameter values that allow the calculation of useful statistical information about

the relationship between input factors and a parameter of interest known as the response variable.

Underlying every DoE plan is an assumed statistical model for the relationship between input factors and

the response variable. Generally the purpose of DoE is to improve the performance of the same or similar

systems. DoE is most commonly used for systems such as agricultural production, medical treatments,

and industrial manufacturing which are subject to uncontrolled variables. Frequently, the effects of many

test factors each having multiple test values are investigated at the same time, so combinatorial

mathematics is often used in planning DoE.

DESIGN OF EXPERIMENTS

The body of knowledge we call DoE today is based largely on the 1920s works of Fisher and Yates (9)

for agricultural experiments. In agriculture, the test factors are treatments (such as fertilizer types and

amounts) which are applied to experimental units (such as plots of land) and the yield of crop (response

variable) is measured. Frequently the yield from different experimental units can be quite different and

since statistical conclusions are often needed for conditions where some factors in the experiment cannot

be controlled. Assignment of treatments to experimental units using a mechanical randomization device

made it possible to regard the effects of uncontrolled factors as random error. Thus random assignment of

treatments to the experimental units made it possible to use statistical methods to interpret the data from

DoE. The types of DoE plans used in agriculture were randomized block designs, balanced incomplete

block designs, Latin square designs, and their extensions.

In the 1940s and 1950s, DoE methods were adapted to improve performance of industrial processes and

pharmaceutical development. The factors were process variables which could be classified as primary

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
3

test factors, background factors, factors held constant, and uncontrolled factors. In the 1960s, Taguchi

investigated and promoted the use of DoE methods to develop robust products and manufacturing

processes. Taguchi determined that to develop high quality products it was necessary to determine

product parameters at which the variation in product performance from uncontrollable factors (such as

environmental factors, deterioration, and manufacturing variations) was as small as possible. Taguchi

used DoE to improve the main function of a product (by amplifying effect of signal factor and attenuating

effect of noise factors). He promoted the use of mathematical objects called orthogonal arrays (OAs) for

his adaptations of DoE methods, and his ideas became popular among manufacturers.

ORTHOGONAL ARRAYS

An orthogonal array, OAλ(N;t, k, v) is an N x k array. In every N x t subarray, each t-tuple occurs exactly

λ times. We refer to t as the strength of the coverage of interactions, k as the number of parameters or

components (degree), and v as the number of possible values for each parameter or component (order).

Example. Suppose we have a system with three on-off switches, controlled by an embedded processor.

The following table tests all pairs of switch settings exactly once each. Thus t = 2, λ = 1, v = 2. Note that

⎛3there are vt = 22 possible combinations of values for each pair: 00, 01, 10, 11. There are ⎜⎜⎝
⎞
⎟⎟⎠ = 3 ways to

2

select switch pairs: (1,2), (1,3), and (2,3), and each test covers three pairs, so the four tests shown in

Table 1 cover a total of 12 combinations, which implies that each combination is covered exactly once.

As one might suspect, it can be very challenging to fit all combinations to be covered into a set of tests

exactly the same number of times.

Test Sw 1 Sw 2 Sw 3
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Table 1. An orthogonal array with three factors of two levels each

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
4

The benefits of DoE based on orthogonal arrays are (1) the main effects of different factors are not

confounded with each other and are uncorrelated, (2) the main effects have higher precision (smaller

variance) relative to effects evaluated from one-factor-at-a-time DoE, and (3) each main effect is the

average effect for all test values of the other test factors. Two factors are said to interact if their effects

are not additive. A two-factor interaction effect is a measure of how the main effect of one factor changes

with the value of another factor. In the late1980s, with the advent of computer and communication

systems with embedded software, the problem of testing software and hardware-software systems became

important. Some researchers who were familiar with DoE started to investigate the use of OAs for testing

software and systems.

Initial applications of OAs used orthogonal arrays of strength 2 to test computer and communication

systems, a methodology known as pairwise testing. The objective in pairwise testing is to exercise all

possible pairs of test values and check whether the software or the system under test behaves as expected.

A test suite based on an OA of strength 2 satisfies the criterion of pairwise testing that for every pair of

test factors, all possible pairs of the test values are exercised. Advantages of test suites based on OAs can

be stated in relation to exhaustive testing. A test suite of strength 2 for four binary variables and one 4

value variable, i.e., the combinatorial test structure 24×41, based on OA(8, 24×41, 2), would require 8 test

cases while exhaustive testing would require 64 test cases.

Two limitations of test suites based on OAs for pairwise testing are that an OA matching the required

combinatorial test structure may not exist, and the test cases determined using OAs frequently contain

invalid pairs of test values. For example, suppose the required combinatorial test structure for five test

factors is 24×31(four factors have 2 test values each and one has three test values). It can be shown that

OA of strength 2 matching the combinatorial test structure 24×31 does not exist. In such cases a suitable

OA is modified to fit the need. The array in Table 2 is not an orthogonal array but it covers all pairs of test

settings and it can be used to construct a pairwise testing suite for the combinatorial test structure 24×31 .

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
5

Suppose the five factors were (1) operating system (OS) with test values {XP, Linux}, (2) browser with

test values {Internet Explorer (IE), Firefox}, (3) protocol with test values {IPv4, IPv6}, (4) CPU type

with test values {Intel, AMD}, and (5) database management system (DBMS) with test values {MySQL,

Sybase, Oracle}. Then the corresponding test suite based on Table 2 is shown in Table 3.

Table 2: Array for combinatorial test structure 24×31

1 2 3 4 5
1 0 0 0 0 0
2 1 1 1 1 0
3 0 0 1 1 1
4 1 1 0 0 1
5 0 1 0 1 2
6 1 0 1 0 2
7 0 1 1 0 2
8 1 0 0 1 2

Table 3: Pairwise testing suite based on Table 2

Test cases OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 Linux Firefox IPv6 AMD MySQL

3 XP IE IPv6 AMD Sybase

4 Linux Firefox IPv4 Intel Sybase

5 XP Firefox IPv4 AMD Oracle

6 Linux IE IPv6 Intel Oracle

7 XP Firefox IPv6 Intel Oracle

8 Linux IE IPv4 AMD Oracle

Since the browser Internet Explorer (IE) does not run on the operating system Linux, the pair {Linux, IE}

appearing in test cases 6 and 8 are invalid; therefore, these two test cases are not legitimate. If the test

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
6

case 6 and 8 were deleted from the test suite then we will lose other pairs covered by these two test cases,

such as the pairs {AMD, Oracle} and {Intel, Oracle}. Then the test suite shown in Table 4 would not

cover all valid pairs of test values. This is an example of a constraint among test values. Constraints are

an important consideration in covering array generation, discussed later in this article.

COVERING ARRAYS

Since OAs do not exist for many combinatorial test structures, and since test suites based on OAs may

contain invalid test cases (see Tbl. 3), researchers in the early 1990s (10) developed methods to generate

pairwise test suites which covered all valid pairs of test values in as-few-as-possible test cases. In 1993,

Sloan (11) formally defined the concept of covering arrays as follows. A fixed-value covering array

denoted by CA(N, vk, t) is an N х k matrix of entries from the set {0, 1, …, (v – 1)}such that that every

set of t-columns contains each possible t-tuple of entries at least once. A fixed value covering array is

also denoted by CA(N, k, v, t). A mixed-value covering array denoted by CA(N,v1
k1v2

k2…vn
kn, t) is an

extension of fixed value CA where k = k1 + k2 +… + kn; k1 columns have v1 distinct values, k2 columns

have v2 distinct values, ... , and kn columns have vn distinct values.

All orthogonal arrays are covering arrays but not all covering array are orthogonal arrays. It can also be

shown that given any orthogonal array, a covering array of equal or fewer rows exists that covers the

same combinations. Consider the covering array in Table 4, which includes all pairwise combinations of

the five variables shown in the orthogonal array in Table 3. In this case, only six rows are needed to

cover all 2-way combinations, rather than eight. Some 2-way combinations in the CA are covered more

than once, rather than exactly one each as in the OA, but for software testing this does not matter if we are

only trying to determine whether the output is correct for each set of inputs.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
7

Table 4. Covering array for combinatorial test structure 24×31

1 2 3 4 5
1 0 0 0 0 0
2 1 1 1 1 0
3 0 1 0 1 1
4 1 0 1 0 1
5 0 0 1 1 2
6 1 1 0 0 2

The connection between pairwise testing and covering arrays was made by Dalal and Mallows (7) who

observed that DoE plans based on OAs enable evaluations of the main effect of each test factor (the

average effect for all test values of the other test factors). Evaluation of main effects is important in DoE.

In pairwise testing for software there is no need to evaluate main effects of test factors such as, for

example, the effect of different levels of fertilizer and water on crop yield. Instead interest lies in covering

all pairs of test values to determine if the software responds correctly to inputs. Thus CAs rather than

OAs are better suited for pairwise testing of software and systems.

For software failures triggered by a single parameter value or interactions between parameters, pairwise

testing can be effective. For example, a router may be observed to fail only for a particular protocol when

packet volume exceeds a certain rate, a 2-way interaction between protocol type and packet rate. Figure 1

illustrates how such a 2-way interaction may happen in code. Note that the failure will only be triggered

when both pressure < 10 and volume > 300 are true.

if (pressure < 10) {

// do something

if (volume > 300) {

faulty code! BOOM!

}

else {

good code, no problem

}

}

else {

// do something else

}

Figure 1. 2way interaction failures are triggered when two conditions are true.
8

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei

Limitations of Pairwise Testing

What if some failure is triggered only by a very unusual combination of 3, 4, or more sensor values? It is

very unlikely that pairwise tests would detect this unusual case; we would need to test 3-way and 4-way

combinations of values. But is testing all 4-way combinations enough to detect all errors? What degree

of interaction occurs in real failures in real systems? NIST studies beginning in 1999 showed that across

a variety of domains, all failures could be triggered by a maximum of 4-way to 6-way interactions (1, 2,

3, 4). As shown in Figure 2, the failure detection rate increased rapidly with interaction strength (the

interaction level t in t-way combinations is often referred to as strength). With the NASA application, for

example, 67% of the failures were triggered by only a single parameter value, 93% by 2-way

combinations, and 98% by 3-way combinations. The detection rate curves for the other applications

studied are similar, reaching 100% detection with 4 to 6-way interactions. Studies by other researchers

(5) have been consistent with these results.

Figure 2. Most failures are triggered by one or two parameters interacting,
with progressively fewer by 3, 4, or more.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
9

Software Failures and the Interaction Rule

These results are interesting because they suggest that, while pairwise testing is not sufficient, the degree

of interaction involved in failures is relatively low. This result is summarized in an empirical observation

called the Interaction Rule: most failures are caused by one or two parameters interacting, with

progressively fewer by 3, 4, or more parameter interactions.

Testing all 4-way to 6-way combinations may therefore provide reasonably high assurance. As with

most issues in software, however, the situation is not that simple. Efficient generation of test suites to

cover all t-way combinations is a difficult mathematical problem that has been studied for nearly a

century. In addition, most parameters are continuous variables which have possible values in a very large

range (+/- 232 or more). These values must be discretized to a few distinct values. Most glaring of all is

the problem of determining the correct result that should be expected from the system under test for each

set of test inputs. Generating 1,000 test data inputs is of little help if we cannot determine what the

system under test (SUT) should produce as output for each of the 1,000 tests.

With the exception of combination covering test generation, these challenges are common to all types of

software testing, and a variety of good techniques have been developed for dealing with them. What has

made combinatorial testing practical today is the development of efficient algorithms to generate tests

covering t-way combinations, and effective methods of integrating the tests produced into the testing

process.

Algorithms for High-strength Covering Arrays

A variety of approaches for covering array construction algorithms have been developed, but most can be

categorized as algebraic, search-based, or greedy. Algebraic methods produce compact covering arrays

very quickly for certain classes of problems (8). Their disadvantage is that they are not practical across a

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
10

broad range of problems. Search-based approaches include simulated annealing, genetic algorithms, ant-

colony optimization, and other methods that iteratively improve a candidate solution. They can produce

highly optimized results, i.e., small test suites, but run time is often excessive. One of the most successful

search-based methods for covering array construction is simulated annealing (11).

Greedy algorithms have been used for problems in many domains, and their general framework applies

well to combinatorial testing (12, 13) A greedy algorithm constructs a set of possible solution candidates,

selects the best one according to some metric, then repeats until the problem is solved. To construct a

covering array for testing, the greedy approach generates a large number of candidates, selects the one

that covers the most previously uncovered combinations, and continues until all combinations have been

covered by the test suite. Greedy algorithms are widely used because they tend to be efficient in terms of

run time, and generate small covering arrays. It can be shown that the number of tests produced by a

greedy algorithm is proportional to vt log n, where v = number of discrete variable values, t = interaction

strength, and n = number of variables (14).

COMBINATORIAL TESTING IN PRACTICE

There are basically two approaches to combinatorial testing – use combinations of configuration

parameter values, or combinations of input parameter values. In the first case, we select combinations of

values of configurable parameters. For example, a server might be tested by setting up all 4-way

combinations of configuration parameters such as number of simultaneous connections allowed, memory,

OS, database size, etc., with the same test suite run against each configuration. The tests may have been

constructed using any methodology, not necessarily combinatorial coverage. The combinatorial aspect of

this approach is in achieving combinatorial coverage of configuration parameter values.

In the second approach, we select combinations of input data values, which then become part of complete

test cases, creating a test suite for the application. In this case combinatorial coverage of input data values

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
11

is required for tests constructed. A typical ad hoc approach to testing involves subject matter experts

setting up use scenarios, then selecting input values to exercise the application in each scenario, possibly

supplementing these tests with unusual or suspected problem cases. In the combinatorial approach to

input data selection, a test data generation tool is used to cover all combinations of input values up to

some specified limit.

CONFIGURATION TESTING

Many, if not most, software systems have a large number of configuration parameters. Many of the

earliest applications of combinatorial testing were in testing all pairs of system configurations. For

example, telecommunications software may be configured to work with different types of call (local, long

distance, international), billing (caller, phone card, 800), access (ISDN, VOIP, PBX), and server for

billing (Windows Server, Linux/MySQL, Oracle). The software must work correctly with all

combinations of these, so a single test suite could be applied to all pairwise combinations of these four

major configuration items. Any system with a variety of configuration options is a suitable candidate for

this type of testing.

For example, suppose we had an application that is intended to run on a variety of platforms comprised of

five components: an operating system (Windows XP, Apple OS X, Red Hat Enterprise Linux), a browser

(Internet Explorer, Firefox), protocol stack (IPv4, IPv6), a processor (Intel, AMD), and a database

(MySQL, Sybase, Oracle), a total of 3x2x2x2x2 = 48 possible platforms. With only 10 tests, shown in

Table 5, it is possible to test every component interacting with every other component at least once, i.e.,

all possible pairs of platform components are covered.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
12

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL
2 XP Firefox IPv6 AMD Sybase
3 XP IE IPv6 Intel Oracle
4 OS X Firefox IPv4 AMD MySQL
5 OS X IE IPv4 Intel Sybase
6 OS X Firefox IPv4 Intel Oracle
7 RHEL IE IPv6 AMD MySQL
8 RHEL Firefox IPv4 Intel Sybase
9 RHEL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle
Table 5. Pairwise test configurations

INPUT TESTING

Even if an application has no configuration options, some form of input will be processed. For example,

a word processing application may allow the user to select 10 ways to modify some highlighted text:

subscript, superscript, underline, bold, italic, strikethrough, emboss, shadow, small caps, or all caps. The

font-processing function within the application that receives these settings as input must process the input

and modify the text on the screen correctly. Most options can be combined, such as bold and small caps,

but some are incompatible, such as subscript and superscript.

Thorough testing requires that the font-processing function work correctly for all valid combinations of

these input settings. But with 10 binary inputs, there are 210 = 1,024 possible combinations. But the

empirical analysis reported above shows that failures appear to involve a small number of parameters, and

that testing all 3-way combinations may detect 90% or more of bugs. For a word processing application,

testing that detects better than 90% of bugs may be a cost-effective choice, but we need to ensure that all

3-way combinations of values are tested. To do this, we create a covering array of strength 3, then map

the values to test inputs, as shown in Figure 3.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
13

 A B C D E F G H I J

Tests

Figure 3. A 3way covering array includes all 3way combinations of values.

In Fig. 3, each column gives values for the 10 parameters, labeled A through J. Each row is a test. Note

that for any three columns selected in any order, all eight possible combinations of three binary values can

be found, 000, 001, 010, etc. Thus the table in Fig. 3 is a covering array of strength 3 for 10 binary

variables.

Input Variables vs. Test Parameters

In the example above, we assumed that the parameters to be included in tests were taken from the set of

several inputs to some function in the program, where each parameter had defined values or a range of

values, so a covering array can be computed where each column covers values for an input variable. In

many testing problems, however, there may be only one or two inputs. This common situation can be

illustrated with the example (15) of a “find” command, which takes user input of a string and a file name

and locates all lines containing the string. The format of the command is “find <string> <filename>,

where <string> is one or more quoted strings of characters such as “john”, “john smith”, or “john”

“smith”. Search strings may include the escape character (backslash) for quotes, to select strings with

embedded quotes in the file, such as “\”john\”” to report the presence of lines containing john in quotes

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
14

within the file. The command displays any lines containing one or more of the strings. This command

has only two input variables, string and filename, so is combinatorial testing really useful here?

In fact, combinatorial methods can be highly effective for this common testing problem. To check the

“find” command, testers will want to ensure that it handles inputs correctly. The input variables in this

case are string and filename, but it is common to refer to such variables as parameters. We will

distinguish between the two here, but follow conventional practice where the distinction is clear. The test

parameters identify characteristics of the command input variables. So the test parameters are in this case

different from the two input variables, string and filename. For example, the string input has

characteristics such as length, presence of embedded blanks, etc. Clearly, there are many ways to select

test parameters, so judgment must be used to determine what are most important. One selection could be

the following, where file_length is the length in characters of the file being searched:

String length: {0, 1, 1..file_length, >file_length}

Quotes: {yes, no, improperly formatted quotes}

Blanks: {0, 1, >1}

Embedded quotes: {0, 1, 1 escaped, 1 not escaped}

Filename: {valid, invalid}

Strings in command line: {0, 1, >1}

String presence in file: {0, 1, >1}

For these seven test parameters, we have 4x3x3x4x2x3x3 = 2,592 possible combinations of test parameter

values. If we choose to test all 2-way interactions we need only 19 tests. For 3 and 4-way combinations,

we need only 67 and 218 tests respectively.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
15

Constraints

In general, there are two types of constraints, environment constraints and system constraints.

Environment constraints are imposed by the runtime environment of the system under test (SUT). In the

example introduced earlier, when we test a web application to ensure that it works in different operating

systems and browsers, combinations of Linux and IE do not occur in practice and cannot be tested. In

general, combinations that violate environment constraints could never occur at runtime and thus must be

excluded during test generation.

System constraints are imposed by the semantics of the SUT. For example, in a credit card application

system, the income of an applicant must be a positive number. Invalid combinations that do not satisfy

system constraints may be rendered to the SUT at runtime. When this occurs, these combinations should

be properly rejected by the SUT. Therefore, it is important to test these combinations for the purpose of

robustness testing, i.e., making sure that the SUT is robust when invalid combinations are presented. Note

that in order to avoid potential mask effects, robustness testing often requires that each test contain only

one invalid combination.

There are two general approaches to handling constraints. The first approach is to transform the input

model without changing the test generation algorithm. For example, assume that there exists a constraint,

a > b, between two parameters a and b. A new input model can be created by replacing these two

parameters with a new parameter c whose domain consists of all the combinations of parameters a and b

that satisfy this constraint. A test generation algorithm that does not support constraints can be applied to

this new model to create a combinatorial test set.

The second approach is to modify the test generation algorithm such that constraints are handled properly

during the actual test generation process. For example, many algorithms are greedy algorithms that

typically create a test by choosing, from a pool of candidates, one that covers the most number of

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
16

uncovered tests. Such algorithms can be modified such that they require each candidate in the pool satisfy

all the constraints. Compared to the first approach, this approach often produces a smaller test set, but at

the cost of more execution time.

THE TEST ORACLE PROBLEM

Even with efficient algorithms to produce covering arrays, the oracle problem remains – testing requires

both test data and results that should be produced for each data input. High interaction strength

combinatorial testing may require a large number of tests in some cases, although not always. The oracle

problem occurs with all software testing, of course, but combinatorial methods introduce some interesting

considerations in dealing with test oracles. Some of the more common ways of handling this problem

(for any test methodology) are crash testing, built-in self-test, and model based testing.

Crash testing: The easiest and least expensive approach is to simply run tests against the system under

test (SUT) to check whether any unusual combination of input values causes a crash or other easily

detectable failure. This is essentially the same procedure used in “fuzz testing” (16), which sends random

values against the SUT. Using combinatorial testing in this way could be regarded as a disciplined form

of fuzz testing, because although pure random testing will generally cover a high percentage of t-way

combinations, 100% coverage of combinations requires a random test set much larger than a covering

array. For example, all 3-way combinations of 10 parameters with 4 values each can be covered with 151

tests. Purely random generation requires over 900 tests to provide full 3-way coverage.

Built-in self-test and embedded assertions: An increasingly popular “light-weight formal methods”

technique is to embed assertions within code to ensure proper relationships between data, for example as

preconditions, postconditions, or input value checks. Tools such as the Java Modeling language (JML)

can be used to introduce very complex assertions, effectively embedding a formal specification within the

code. The embedded assertions serve as an executable form of the specification, thus providing an oracle

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
17

for the testing phase. With embedded assertions, exercising the application with all t-way combinations

can provide reasonable assurance that the code works correctly across a very wide range of inputs. This

approach has been used successfully for testing smart cards, with embedded JML assertions acting as an

oracle for combinatorial tests (17). Results showed that 80% - 90% of errors could be found in this way.

Model based test generation uses a mathematical model of the SUT and a simulator or model checker to

generate expected results for each input (18). If a simulator can be used, input values for each test are

taken from the covering array, and expected results can be generated from the simulation. Model checkers

are widely available and can also be used to prove properties such as liveness in parallel processes, in

addition to generating tests. Conceptually, a model checker can be viewed as exploring all states of a

system model to determine if a property claimed in a specification statement is true. What makes a model

checker particularly valuable is that if the claim is false, the model checker not only reports this, but also

provides a “counterexample” showing how the claim can be shown false. If the claim is false, the model

checker indicates this and provides a trace of parameter input values and states that will prove it is false.

To use this method, the model checker is invoked with a mutated specification and input values for each

test in the covering array. The counterexample can be post-processed into a complete test case, i.e., a set

of parameter values and expected result.

ADVANCED TOPICS

The field of combinatorial testing is developing rapidly. This section reviews some recent advances in

combinatorial methods for software testing.

SEQUENCE COVERING ARRAYS

For many types of software, the sequence of events is an important consideration. For example, graphical

user interfaces may present the user with a large number of options that include both order-independent

(e.g., choosing items) and order-dependent selections (such as final selections of items, quantity and

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
18

payment information). The software should work correctly, or issue an appropriate error message,

regardless of the order of events selected by the user. A number of test approaches have been devised for

these problems, including graph-covering, syntax-based, and finite state machine methods.

In testing such software, the critical condition for triggering failures often is whether or not a particular

event has occurred prior to a second one, not necessarily if they are back to back. This situation reflects

the fact that in many cases, a particular state must be reached before a particular failure can be triggered.

For example, a failure might occur when connecting device A only if device B is already connected, or

only if devices B and C were both already connected. The methods described in this paper were

developed to address testing problems of this nature, using combinatorial methods to provide efficient

testing. Sequence covering arrays ensure that every t events from a set of n (n > t) will be tested in every

possible t-way order, possibly with interleaving events among each subset of t events (19, 20, 21).

A sequence covering array, SCA(N, S, t) is an N x S matrix where entries are from a finite set S of s

symbols, such that every t-way permutation of symbols from S occurs in at least one row and each row is

a permutation of the s symbols. The t symbols in the permutation are not required to be adjacent. That

is, for every t-way arrangement of symbols x1, x2, ..., xt, the regular expression .*x1.*x2.*xt.* matches at

least one row in the array.

Example 1. We may have a component of a factory automation system that uses certain devices

interacting with a control program. We want to test the events defined in Table 6. There are 6! = 720

possible sequences for these six events, and the system should respond correctly and safely no matter the

order in which they occur. Operators may be instructed to use a particular order, but mistakes are

inevitable, and should not result in injury to users or compromise the operation. Because setup,

connections and operation of this component are manual, each test can take a considerable amount of

time. It is not uncommon for system-level tests such as this to take hours to execute, monitor, and
19

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei

complete. We want to test this system as thoroughly as possible, but time and budget constraints do not

allow for testing all possible sequences, so we will test all 3-event sequences.

Event Description
a connect air flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e engage drive motor
f engage steering control

Table 6. Example system events

With six events, a, b, c, d, e, and f, one subset of three is {b, d, e}, which can be arranged in six

permutations: [b d e], [b e d], [d b e], [d e b], [e b d], [e d b]. A test that covers the permutation [d b e] is:

[a d c f b e]; another is [a d c b e f]. With only 10 tests, we can test all 3-event sequences, shown in

Table 2. In other words, any sequence of three events taken from a..f arranged in any order can be found

in at least one test in Table 7 (possibly with interleaved events).

Test Sequence
1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f

10 f b d a e c
Table 7. All 3-event sequences of 6 events.

Returning to the example set of events {b, d, e}, with six permutations: [b d e] is in Test 5, [b e d] is in

Test 4, [d b e] is in Test 8, [d e b] is in Test 3, [e b d] is in Test 7, and [e d b] is in Test 2.

A larger example system may have 10 devices to connect, in which case the number of permutations is

10!, or 3,628,800 tests for exhaustive testing. In that case, a 3-way sequence covering array with 14 tests

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
20

covering all 3-way sequences is a dramatic improvement, as is 72 tests for all 4-way sequences.

Construction methods for sequence covering arrays include greedy algorithms (19) and answer-set

programming (21). Greedy methods produce good results across a broad range of problem sizes. Answer

set programming can generate more compact test sets than greedy methods, but this advantage may not

hold for larger problem sizes.

MEASURING COMBINATORIAL COVERAGE

Since it is nearly always impossible to test all possible combinations, combinatorial testing is a reasonable

alternative, but determining an appropriate interaction strength t to be tested is critical. Conversely, test

suites developed not using combinatorial methods may still cover a relatively large number of

combinations. Determining the level of input or configuration state space coverage can help in

understanding the degree of risk that remains after testing. If 90% - 100% of the state space has been

covered, then presumably the risk is small, but if coverage is much smaller, then the risk may be

substantial. A variety of measures of combinatorial coverage can be helpful in estimating this risk and

have general application to any combinatorial coverage problem (19, 22, 23).

Software Test Coverage

Test coverage is one of the most important topics in software assurance. Users would like some

quantitative measure to judge the risk in using a product. For a given test set, what can we say about the

combinatorial coverage it provides? With physical products, such as light bulbs or motors, reliability

engineers can provide a probability of failure within a particular time frame. This is possible because the

failures in physical products are typically the result of natural processes, such as metal fatigue. With

software the situation is more complex, and many different approaches have been devised for determining

software test coverage. Thus a variety of measures have been developed to gauge the degree of test

coverage. Some of the better-known coverage metrics include statement coverage (percentage of

statements executed), branch coverage (percentage of branches evaluated to both true and false),

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
21

condition coverage (percentage of conditions within decision expressions evaluated to both true and

false), and modified condition decision coverage (MCDC), in which every condition in a decision in the

program has taken on all possible outcomes at least once, and each condition has been shown to

independently affect the decision outcome, and that each entry and exit point have been invoked at least

once. All of these measures deal with execution sequence and require access to source code.

Combinatorial Coverage

Even in the absence of knowledge about a program’s inner structure, we can apply combinatorial methods

to produce precise and useful information by measuring the state space of inputs. Suppose we have a

program that accepts two inputs, x and y, with 10 values each. Then the input state space consists of the

102 = 100 pairs of x and y values, which can be pictured as a checkerboard square of 10 rows by 10

columns. With three inputs, x, y, and z, we would have a cube with 103 = 1,000 points in its input state

space, and so on.

Looking closely at the nature of combinatorial testing leads to several measures that are useful. For a set

of t variables, a variable-value configuration is a set of t valid values, one for each of the variables.

Example. Given four binary variables, a, b, c, and d, a=0, c=1, d=0 is a variable-value configuration,

and a=1, c=1, d=0 is a different variable-value configuration for the same three variables a, c, and d.

For a given test set for n variables, simple t-way combination coverage is the proportion of t-way

combinations of n variables for which all variable-values configurations are fully covered. If the test set

is a covering array, then coverage is 100%, by definition, but many test sets not based on covering arrays

may still provide significant t-way coverage.

Example. Table 8 shows an example with four binary variables, a, b, c, and d, where each row represents

a test. Of the six 2-way combinations, ab, ac, ad, bc, bd, cd, only bd and cd have all four binary values

covered, so simple 2-way coverage for the four tests in 0 is 1/3 = 33.3%. There are four 3-way

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
22

combinations, abc, abd, acd, bcd, each with eight possible configurations. Of the four combinations, none

has all eight configurations covered, so simple 3-way coverage for this test set is 0%.

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

Table 8. An example test array for a system with four binary components

A test set that provides full combinatorial coverage for t-way combinations will also provide some degree

of coverage for (t+1)-way combinations, (t+2)-way combinations, etc. For a given test set for n

variables, (t+k)-way combination coverage is the proportion of (t+k)-way combinations of n variables for

which all variable-values configurations are fully covered. This statistic may be useful for comparing two

combinatorial test sets. For example, different algorithms may be used to generate 3-way covering arrays.

They both achieve 100% 3-way coverage, but if one provides better 4-way and 5-way coverage, then it

can be considered to provide more software testing assurance.

Variable-Value Configuration coverage

So far we have only considered measures of the proportion of combinations for which all configurations

of t variables are fully covered. But when t variables with v values each are considered, each t-tuple has

vt configurations. For example, in pairwise (2-way) coverage of binary variables, every 2-way

combination has four configurations: 00, 01, 10, 11. We can define two measures with respect to

configurations: variable-value configuration coverage is the proportion of variable-value configurations

that are covered; for a given set of n variables, (p, t)-completeness is the proportion of the C(n, t)

combinations that have configuration coverage of at least p.

Example. For Table 8 above, there are C(4, 2) = 6 possible variable combinations and C(4, 2) × 22 = 24

possible variable-value configurations. Of these, 19 variable-value configurations are covered and the

23
Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei

only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10. But only two, bd and cd, are covered with all

4 value pairs. So for the basic definition of simple t-way coverage, we have only 33% (2/6) coverage,

but 79% (19/24) for the configuration coverage metric. For a better understanding of this test set, we can

compute the configuration coverage for each of the six variable combinations, as shown in 0. So for

this test set, one of the combinations (bc) is covered at the 50% level, three (ab, ac, ad) are covered at the

75% level, and two (bd, cd) are covered at the 100% level. And, as noted above, for the whole set of

tests, 79% of variable-value configurations are covered. All 2-way combinations have at least 50%

configuration coverage, so (.50, 2)-completeness for this set of tests is 100%.

Although the example in 0 uses variables with the same number of values, this is not essential for the

measurement. Coverage measurement tools that we have developed compute coverage for test sets in

which parameters have differing numbers of values, as shown in Error! Reference source not found..

Vars Configurations covered Config coverage
a b 00, 01, 10 .75
a c 00, 01, 10 .75
a d 00, 01, 11 .75
b c 00, 11 .50
b d 00, 01, 10, 11 1.0
c d 00, 01, 10, 11 1.0

• total 2-way coverage = 19/24 = .79167
• (.50, 2)-completeness = 6/6 = 1.0
• (.75, 2)-completeness = 5/6 = 0.83333
• (1.0, 2)-completeness = 2/6 = 0.33333

Figure 4. The test array covers all possible 2way combinations of a, b, c,and d to different levels.

The graph in Fig. 5 shows a graphical display of the coverage data for the tests in Figure 4. Coverage is

given as the Y axis, with the percentage of combinations reaching a particular coverage level as the X

axis. Note from Fig. 1 that 100% of the combinations are covered to at least the .50 level, 83% are

covered to the .75 level or higher, and a third covered 100%. Thus the rightmost horizontal line on the

graph corresponds to the smallest coverage value from the test set, in this case 50%.

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
24

Figure 5. Graph of coverage from example test data.

TEST PRIORITIZATION

One the the advantages of combinatorial testing is efficiency – by including all t-way combinations, a

tests based on a covering array can encompass a large portion of the input state space in a relatively small

number of tests. But efficiency can be improved still further by prioritizing tests according to some

metric. The basic idea is to run tests in the order most likely to find faults as rapidly as possible.

Prioritization of this sort can be particularly valuable if each test requires significant setup or execution

time. Test prioritization is also used with other (non combinatorial) test methodologies, and is an

important criterion in test design. There are generally two approaches to prioritization with combinatorial

testing: (1) combinatorial coverage may be used as the ordering criterion, i.e., selecting the next test on

the basis of which covers the most previously uncovered combinations, and (2) for a test set based on a

complete covering array, use some metric to order the tests within the array.

Prioritization by Combinatorial Coverage

In this approach to test ordering, an existing test suite, which may not have been developed as a covering

array, is re-ordered to cover combinations as rapidly as possible. The test suite will probably not cover all

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
25

combinations (if it was not specifically developed as a covering array), but if it is sufficiently large, a high

percentage of combinations will be covered (see Combinatorial Coverage section above). These tests are

then ordered according to which ones cover the most combinations that have not been included in

previously executed tests. This method has been shown to be very effective, with a higher rate of fault

detection than other prioritization criteria (24).

Prioritization of Covering Arrays

Test prioritization is still possible when the test suite is a covering arry and thus includes all t-way

combinations (25). A variety of ordering heuristics can be used, including code coverage, specification-

specific weightings, Hamming distance or other measures of difference between tests, and combination

coverage (25, 26). If a greedy algorithm is used to generate the covering array, the tests will

automatically be ordered by combination coverage, since these algorithms iteratively select tests

according to which covers the most previously uncovered combinations. Code coverage metrics order

tests according to which produces the highest level of source code coverage; branch coverage has been

used for this metric (25). In some cases it may be practical use particular aspects of the system under test,

such as assigning higher weights to tests that invoke system features as compared with those that turn off

features. Similarly, selecting tests by which are most different from previously run tests may be helpful

in exercising as many different system functions rapidly. All of the prioritization schemes discussed in

this section have been found to be effective, but their efficacy is likely to vary with characteristics of the

system under test. Determining where to use the various schemes is an area of active research.

CONCLUSIONS

Combinatorial testing practice has grown rapidly from early efforts using orthogonal arrays taken from

the statistical field of Design of Experiments, through simple pairwise testing of 2-way interactions, to t-

way testing of interactions of 3, 4, or more variables. The method’s effectiveness is based on the

empirical Interaction Rule, which states that most failures are caused by one or two parameters

interacting, with progressively fewer by 3, 4, or more parameter interactions. Advances in algorithms

Encyclopedia of Software Engineering, Laplante. Combinatorial Testing, Kuhn Kacker Lei
26

have made it possible to generate t-way covering arrays, for at least t=6, that are practical for testing large

programs. Covering arrays can be applied to either configuration testing or input testing. In

configuration testing, the arrays are used to determine t-way combinations of configurable parameter

values for software that is designed to run on a variety of platforms, or has variable settings that are

established at run time. With input testing, a covering array may be used to set discretized values for a

number of input variables, or to choose combinations of characteristics for a single input variable.

Combinatorial methods are also being applied to software testing to produce efficient tests for sequences

of events or inputs. This work is recent and additional study is needed to determine its applicability in

various testing problems. Measuring combinatorial coverage of a test set can be valuable in

understanding the test set’s potential for revealing interaction faults, even if the tests were not designed

using combinatorial methods. A t-way covering array by definition has 100% combination coverage for

combinations of t or fewer variables, but it may also provide some coverage at higher values of t.

Coverage measurement helps testers understand the higher strength coverage of a t-way covering array.

Tools to implement the combinatorial methods described in this article are widely available and are being

used by testers to reduce cost and increase test effectiveness.

Disclaimer: Certain products are identified in this document, but such identification does not imply

recommendation by the US National Institute for Standards and Technology, nor does it imply that the products

identified are necessarily the best available for the purpose.

REFERENCES

1.	 Wallace, D.R.; Kuhn, D.R. Failure Modes in Medical Device Software: an Analysis of 15 Years

of Recall Data, International Journal of Reliability, Quality, and Safety Engineering, Vol. 8, No.

4, 2001.

Encyclopedia of Software Engineering, Laplante.	 Combinatorial Testing, Kuhn Kacker Lei
27

2. Kuhn, D.R.; Reilly, M.J. An Investigation of the Applicability of Design of Experiments to

Software Testing, 27th NASA/IEEE Software Engineering Workshop, NASA Goddard Space

Flight Center, 4-6 December, 2002 .

3.	 Kuhn, D.R.; Wallace, D.R.; and Gallo, A. “Software Fault Interactions and Implications for

Software Testing,” IEEE Transactions on Software Engineering, 30(6): 418-421, 2004

4.	 Kuhn, D.R.; Okun, V. “Pseudo-exhaustive Testing for Software,” Proceedings of 30th

NASA/IEEE Software Engineering Workshop, pp. 153-158, 2006

5.	 Bell, K.Z. Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid Approach, PhD

Dissertation, North Carolina State University, 2006.

6.	 Sloane, N. J. A. Covering arrays and intersecting codes, Journal of Combinatorial Designs, 1

(1993), 51–63.

7.	 Dalal, S.R.; Mallows, C.L. Factor-covering designs for testing software, Technometrics, 40(3)

(1998), 234–242.

8.	 Colbourn, C. J. Combinatorial aspects of covering arrays. Le Matematiche (Catania), 58, 121–

167. (2004).

9.	 Box, G. E., Hunter,W.G., Hunter, J.S., Hunter,W.G., "Statistics for Experimenters: Design,

Innovation, and Discovery", 2nd Edition, Wiley, 2005.

10. Sherwood, G. B. (1994), “Effective testing of factor combinations,” Proceedings of the Third

International Conference on Software Testing, Analysis and Review, Washington D.C. May 8–

12, 1994.

11. Cohen, M. B., Colbourn, C. J., & Ling, A. C. H. (2008). Constructing Strength 3 Covering Arrays

with Augmented Annealing. Discrete Mathematics, 308, 2709–2722.

Encyclopedia of Software Engineering, Laplante.	 Combinatorial Testing, Kuhn Kacker Lei
28

12. Bryce, R.; Colbourn, C.J.; Cohen, M.B. A Framework of Greedy Methods for Constructing

Interaction Tests. The 27th International Conference on Software Engineering (ICSE),St. Louis,

Missouri, pages 146-155. (May 2005).

13. Lei, Y.; Kacker, R.; Kuhn, D.R.; Okun, V.; Lawrence, J. “IPOG/IPOG-D: Efficient Test

Generation for Multi-Way Combinatorial Testing”, Software Testing, Verification, and

Reliability.

14. Hartman. A. Software and hardware testing using combinatorial covering suites. Haifa Workshop

on Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, June 2002.

15. Ostrand, T.J.; Balcer, M.J. The Category-Partition method for specifying and generating

functional tests, Communications of ACM 31, 1988.

16. Miller, B.P.; Fredrikson, L., and So, B., An Empirical Study of the Reliability of UNIX Utilities.

Communications of the ACM 33, 12 (December 1990), 32-44.

17. du Bousquet, L.; Ledru, Y.; Maury, O.; Oriat, C.; Lanet,	 J.-L. A case study in JML-based

software validation. Proceedings of 19th Int. IEEE Conf. on Automated Sofware Engineering, pp.

294-297, Linz, Sep. 2004

18. Ammann, P.; Black, P.E. Abstracting Formal Specifications to Generate Software Tests via

Model Checking, Proc. 18th Digital Avionics Systems Conference, Oct. 1999, IEEE, vol. 2. pp.

10.A.6.1-10

19. Kuhn, D.R.; Kacker, R.; Lei, Y. Practical Combinatorial Testing, NIST SP800-142, National

Institute of Standards and Technology, October 6, 2010.

20. Zamli, K.Z., Othman, R.R., Zabil, M.H.M., On Sequence Based Interaction Testing, IEEE Symp.

on Computers and Informatics, IEEE, 20-23 Mar. 2011, pp. 662-667.

Encyclopedia of Software Engineering, Laplante.	 Combinatorial Testing, Kuhn Kacker Lei
29

21. Erdem, E.; Inoue, K. J.; Oetsch, J. Puhrer, H. Tompits, C. Yilmaz, Answer-Set Programming as	 a

New Approach to Event-Sequence Testing, Tech. Rpt., Sabanci U., Istanbul, Turkey, 2011.

22. Maximoff, J.R.; Trela, M.D.; Kuhn, D.R.; Kacker, R. "A Method for Analyzing System State-

space Coverage within a t-Wise Testing Framework", IEEE International Systems Conference

2010, Apr. 4-11, 2010, San Diego.

23. Chen, B. Zhang, J. Tuple Density: A New Metric for Combinatorial Test Suites.	 33rd Intl. Conf.

on Software Engineering, Honolulu, Hawaii, May 21 – 28, 2011.

24. Bryce, R. C.; Memon, A. M.. Test suite prioritization by interaction coverage. In the Workshop

on Domain-Specific Approaches to Software Test Automation, pages 1–7, Sep.2007.

25. Bryce, R. Colbourn, C. Prioritized interaction testing for pair-wise coverage with seeding and

constraints. Journal of Information and Software Technology, 48(10):960–970, 2006

26. Qu, X.; Cohen, M. B.; Woolf, K. M.. Combinatorial interaction regression testing: A study of test

case generation and prioritization. In Intl. Conference on Software Maintenance, pages 255–264,

Oct. 2007.

Encyclopedia of Software Engineering, Laplante.	 Combinatorial Testing, Kuhn Kacker Lei
30

